Proceedings of the 16th International Conference on Numerical Methods in Fluid
Dynamics, To appear in "Lecture Notes in Physics",
Springer—Verlag, Heidelberg Germany.

Aspects (and Aspect Ratios) of Cartesian
Mesh Methods

Marsha J. Berger
Courant Institute
New York, NY 10012

Michael J. Aftosmis
NASA Ames Research Center
Moffett Field, CA 94035

6—10 July, 1998
Arcachon, France



Aspects (and Aspect Ratios) of Cartesian
Mesh Methods

Marsha Berger™ and Michael Aftosmis*

*Courant Institute, New York, NY 10012
email: berger@cims.nyu.edu

*NASA Ames Research Center, Moffett Field, CA 94025
email: aftosmis@nas.nasa.gov

Key Words: GRID GENERATION, CARTESIAN MESHES, COMPLEX GEOMETRY,
EMBEDDED BOUNDARIES

1 Introduction

Over the last decade, researchers have taken another look at the use of Carte-
sian meshes for grid generation around complicated configurations [Melton
(96)], [Karman (95)], [Charlton and Powell (97)], [Landsberg and Boris (93)],
[Pember et al. (91)]. This research has demonstrated the advantages of cut-
cell Cartesian approaches in robustness, efficiency and automatibility. Al-
though the arbitrarily small cut-cells which appear at intersections with the
geometry may introduce accuracy and stability concerns, Cartesian methods
present a viable path for mesh generation around complex geometry.

This paper presents a concise description of a revised grid generation al-
gorithm for Cartesian meshes with embedded geometry. While conceptually
straightforward, certain decisions make the process extremely efficient both
in terms of memory requirements and execution speed. Adaptively refined
meshes with millions of cells may be generated for very complex geome-
tries within minutes on a desktop workstation. The paper also presents an
approach for resolving geometry which splits Cartesian cells into distinct re-
gions with unique flow states. It further examines the possibility of reducing
the number of Cartesian cells in a domain through the use of anisotropic
sub-division of Cartesian cells using a variety of configurations. A detailed
example of the run-time performance of the grid generator is included.

1.1 Background

A comprehensive presentation of Cartesian mesh methods must consider a
variety of topics. This paper focuses mainly on the generation of Cartesian
meshes with embedded boundaries. This includes the computational geome-
try algorithms and data structures which support rapid intersection of non-
convex objects, as well as mesh refinement criteria. The grid generation pro-
cess is greatly simplified by a preprocessor (described in [Aftosmis, et al.
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(98)]) which robustly extracts the wetted surface of a configuration described
by surface triangulations of an arbitrary number of individual (possibly in-
tersecting) objects.

Another important aspect of Cartesian mesh methods concerns the nu-
merical issues that arise in computing steady flow. The lack of grid smooth-
ness at the cut-cells where the solid body intersects the grid locally degrades
scheme accuracy. However, much work has been done in the last few years de-
veloping methods for these types of irregular grids [Coirier and Powell (94)],
[Berger and Melton (94)], [Johansen and Colella (99)]. The situation for time
dependent flows however is more difficult and less developed. This is mainly
due to stability problems encountered by explicit methods on cut-cells whose
volumes are potentially orders of magnitude smaller than the regular flow
cells.

In both the steady and time dependent cases, mesh refinement is an im-
portant component. Section 2.3 examines a generalization of the refinement
criteria to include anisotropic subdivision. This approach helps reduce the
number of cells produced at each adaptation by a constant factor, and offers
the potential of resolving a given geometry with considerably fewer Cartesian
cells. Finally, section 4 mentions extensions currently underway to inviscid
flows with moving geometry and to the automatic generation of viscous grids
with boundary layer zoning.

2 Cartesian Grid Generation Algorithm

The starting point for the grid generator is a closed watertight surface trian-
gulation describing the geometry. In broad outline, our algorithm first inter-
sects the geometry with the mesh, refining the flow field cells where necessary.
This process repeats until the maximum specified number of levels has been
reached or no more refinement is needed. Only at this point is the detailed
geometric information at the cut-cells computed. This is described in section
2.1. As a result of this process, some cut-cells may be split into several sepa-
rate polyhedra. We describe a robust algorithm for treating such “split-cells”
in section 2.2. Finally, section 2.3 presents an extension of the grid genera-
tor that allows anisotropic refinement of Cartesian cells. While this approach
cannot be applied to boundary-layer zoning, it can substantially reduce the
total number of cells required for a given simulation. Since the grid generator
views the mesh as a completely unstructured collection of hexahedra, the
data structures easily accommodate such anisotropically refined cells.

2.1 Overall Description

Grid generation proceeds in two steps. In the first, a uniform, coarse Cartesian
mesh (possibly a single “root” cell) is repeatedly refined using only simple
geometric criteria. The goal is to provide a good starting mesh for the flow
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solver, and to ensure the geometry is well resolved on the mesh. During this
step, the only geometric information needed is whether or not a Cartesian
cell is in the flow field, within the solid object, or cut by the geometry. At the
end of this step, the flow field cells in the volume mesh have been completely
determined, and can be written to disk. This frees active memory so that
more elaborate data structures can be retained for determining the precise
geometry of the cut-cells without increasing the maximum memory needed
during mesh generation. In the second step, the detailed intersection of the
geometry and the cut-cells is computed.

In a little more detail, the grid generation starts with an initial coarse
mesh of specified dimensions. The cells are classified as flow, cut or solid.
Cut-cells can be classified by intersecting them with the surface triangulation.
This can be done rapidly using the ADT [Bonet and Peraire (91)] to store
the triangles, so that each query takes O(log(Nr)), where N7 is the number
of triangles in the surface description. Further speedup comes from using
bounding box filters preceding the ADT search. “Flow” and “solid” cells can
be classified by ray-casting [O’Rourke (94)] from the test cell to just outside
the bounding box of the closed, watertight, geometry. Again the ADT is
useful here for searching through surface triangles. However, to minimize this
expensive ray-casting procedure, once a cell’s status is determined, it shares
this status with all its uncut neighbors in a “painting” step. Thus, one ray cast
can classify a large number of cells. (These search and traversal algorithms are
described in more detail in [Aftosmis, et al. (98)]). Cartesian cells which lie
completely internal to the geometry (“solid” cells) are immediately removed
from the mesh, and only the flow and cut-cells are retained.

Based on estimates of the surface curvature, cut-cells are marked as need-
ing refinement. A number of neighboring cells are also marked to be refined.
These “buffer” layers typically extend three to five cells in all directions. The
refinement criteria looks at both the variation of the surface normals within a
cell, and the variation of the average normal between cells. This criteria alone
would always refine cells that are split by the geometry, even if two distinct
surfaces within a cell were planar. To avoid this, the variation of normals for
each connected piece of the surface needs to be measured separately. Note
that the refinement in the mesh generator is solely based on resolving the
geometry. Further solution-adaptive mesh refinement will occur as necessary
in the flow solver.

After the cells are marked for division the actual refinement takes place,
and new cells and faces are created. To prevent adjacent cell sizes from differ-
ing by more than one level, the cell division routines sweep from coarsest to
finest. The faces are kept sorted in z/y/z order. To maintain this convention,
the face lists are repacked after each complete division pass. Finally, some of
the newly refined cells will lie entirely within the geometry. Again, ray-casting
determines the cell status of a newly created non-intersected cell. The solid
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cells with their associated faces are then deleted from the mesh and the cell
and face lists are compacted.

In the second phase of the grid generation, the detailed intersection of the
surface triangles and cut cells is computed. The data structures for these cells
are necessarily more complex than those of non-intersected Cartesian cells.
Each cut-cell maintains a list of its intersected surface triangles. The “flow”
faces of the cut cell are determined by clipping the Cartesian faces against the
triangles. Each triangle may also be clipped into a convex polygon by the cell
that owns it. The true centroids and areas of these polygons, cut faces and
cut cells are also computed and retained. Cells and faces in the volume mesh
(uncut cells) require 9 four-byte words of storage per cell. Since each cut-
cell is linked to its triangles, the storage for cut cells is problem dependent.
However, in the example of figure 5 the cut cells generated using 9 levels
of mesh refinement required an average of 84 words per cell. This includes
full information, such as the double precision centroids of each triangle’s
intersection with each cut cell. (On average each cut cell was linked to 4.19
triangles.) Since the volume mesh is written to disk and storage is released
before the cut cell processing, the maximum memory used to generate the
mesh was 53 Mb.

2.2 Split-Cells

As with any method, certain annoying details must be taken care of. For
Cartesian grids with embedded geometry, this laborious chore comes from
cut Cartesian cells which are “split” into multiple distinct “flow” regions by
the geometry. For example, a thin wing may bisect the cells for the trailing
15% of the chord, even though the Cartesian cell size would be sufficient to
resolve either the top or bottom of the thin surface alone. It can be quite
inefficient to use mesh refinement alone to resolve the entire thin piece of
geometry. Even geometry that does not appear thin may produce a small
number of split-cells. Figure 1 shows examples of split-cells stemming from
two common geometric situations.

The main difficulty in treating this problem is recognizing that a cell
has been split, and connecting the various faces with their corresponding
(possibly split) neighbor cells. This is further complicated by the possibility
of refinement boundaries occurring at such faces. A coarse cell face may be
split, whereas the corresponding face on the refined neighbor may not be.
The example in figure 2 shows a large cell a linked to four smaller cells. The
high z face of cell a is split, but it links to the low z face of cell b which is not.
In the case presented by the figure, five faces would be stored, one for ab,
two for ac (cell ¢ is split), one for ae and one for ad. To include all diabolical
cases, the algorithm also permits cells to be split into more than two flow
cells.

Our treatment of split-cells first groups the connected surfaces within a
cell into distinct polyhedra. Since phase two of the mesh generator works cell-
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by-cell, each cell must save enough information to correctly match with its
neighboring possibly split-cells as a post-processing step. We match fragments
of the Cartesian edges themselves. Each split-cell or face must have an edge
fragment from the Cartesian mesh with an original Cartesian edge. Since
Cartesian edges are known by their integer coordinates, they can be used to
unambiguously match the fragments on either side. Relying on constructed
geometry, (for example resulting from the polygon clipping) may introduce
floating-point errors which could lead to non-robustness. Centroid matching
algorithms can be fooled. Using an integer-based approach eliminates any
dependence on floating point comparisons.

2.3 Anisotropic Refinement

One of the major drawbacks of Cartesian methods is its lack of flexibility,
particularly in the ability to do directional refinement. A solution to this
problem would be a breakthrough for extending Cartesian mesh methods
to the high Reynolds number viscous case. An interesting first stab at this
problem is in [Coirier (94)], where cells in a two dimensional quadtree mesh
are refined with only one planar cut rather than the usual two, and the
direction is arbitrary. Unfortunately, this produced meshes that were too
irregular for the flow solver to compute an accurate solution. Here we explore
the usefulness of a limited anisotropic refinement capability along Cartesian
coordinate directions. The asymptotic complexity of this approach is not
sufficient to produce “boundary layer” zoning for viscous flows; our aim is to
reduce the total number of cells in an inviscid mesh. At this point we are only
considering the use of anisotropic refinement to resolve static geometry. We
follow the same procedure as in [Aftosmis (94)], although that paper applied
it to a three dimensional flow field without geometry.

The main difficulty lies in establishing useful criteria for directional re-
finement, and trying to insure that there are smooth transitions between
anisotropic regions in different directions. Our strategy is two-fold: if the
variation of surface normals within a cell is large enough to warrant refine-
ment, and is almost completely in one coordinate direction, we refine only in
that direction. Our definition of “almost completely” is illustrated in figure
3, where if the variation in the surface normals is outside an angle § of the
coordinate direction, refinement in that direction occurs. Secondly, we use
the cautious strategy of also refining in the direction normal to the surface
normal, or most parallel to the geometry. The surface normals do not give any
information about this direction. The expectation is that the flow field as-
sociated with surface curvature will warrant the additional refinement. Note
that with this strategy, no cell will be refined in only one direction.

With anisotropic refinement, it is more difficult to ensure a smooth vari-
ation in the mesh. In addition, one has to be careful that at least one of the
cells adjacent to the face has the correct picture of it. For example, consider
an a-face. If the cell on the left is refined in y and the cell on the right is
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refined in z, then neither cell has a correct picture of the face. To prevent
such anomalies, each cell “shares” its refinement tag with its neighbor. Since
this could propagate, invalidating previously acceptable faces, several sweeps
over the face list may be necessary. Although a diabolical case may need a
large number of sweeps, in practice one or two passes suffices.

The refinement strategy described above for uniform isotropic refinement
is actually implemented by sweeping over the 3 coordinate directions indi-
vidually. Each refinement bisects the cell in one direction only. Each new
face that bisects a cell creates one new cell. Both the new and old cells adjust
their locations (encoded into unique cell “names” [Aftosmis, et al. (98)]). The
faces that point to these cells must also be adjusted. Since we do not keep
cell-to-face pointers, this is accomplished by keeping a single pointer from old
cells to their new sibling. A sweep over faces easily adjusts the affected cells.
Directional refinement is easily implemented within this framework.

As a model geometry for anisotropic refinement consider a cylinder with
its axis aligned with the z-axis. Intuitively, one expects refinement in the
x and y directions, since the cylinder has a circular crosssection in the z-y
plane. However, there is no curvature in the z direction. Table 1 compares
the number of cells in the isotropically refined mesh with the corresponding
anisotropic mesh with the same number of levels as a function of the maxi-
mum allowed aspect ratio. The initial coarse mesh is 24 x 24 x 24 cells, the
refinement criteria uses a variation in the surface normals of 5 degrees, and
the buffer zones are three cells wide. Refinement occurs along the length of
the cylinder anisotropically, but the criteria triggers isotropic refinement at
the corners. Figure 4 shows an aspect ratio 8 mesh around the cylinder. The
growth rate in the number of cells is substantially reduced in the higher as-
pect ratio case, with the total number of cells a factor of 2.2 less with aspect
ratio 4, and 2.7 with aspect ratio 8.

Ref. Level|# Cells (AR 1)|# Cells (AR 2 )|# Cells (AR 4)|# Cells (AR 8)

1 32060 25552
2 86640 59822 49046
3 260460 162226 116428 97818

Table 1. Comparison of number of cells using isotropic refinement versus
anisotropic refinement, as a function of the maximum allowable aspect ratios.

For a more realistic test case, we compare results for an ONERA M6 wing
with anisotropic refinement. The table below shows the total number of cells
in the isotropic mesh, and aspect ratio 2, 4 and 8 meshes. Five buffer cells were
used. A cell was tagged for refinement if the variation in the components of
the normals exceeded 10 degrees, and the directional angle refinement criteria
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was 30 degrees. For the results in the table below, the geometry was tagged for
isotropic refinement, for 6 levels. After that level of resolution, the directional
refinement could begin. Figure 5 shows the Cartesian cut cells that intersect
the geometry, color coded by aspect ratio. The leading and trailing edges are
both refined to the maximum aspect ratio allowed. Even for this case, the
savings in total number of cells between the isotropic mesh and the aspect
ratio 8 mesh is over a factor of 2.

Ref. Level|# Cells (AR 1)|# Cells (AR 2 )|# Cells (AR 4)|# Cells (AR 8)

7 163618 116835

8 328963 217638 167206

9 703163 447363 320843 246220
10 1469067 929389 649684 497540

Table 2. Comparison of number of cells using anisotropic refinement for the On-
eraM6 wing.

3 Computational Results

We use an example of a mesh around a business jet to illustrate the run-
time performance of the grid generator. There are 92850 triangles in the
initial surface description. The final mesh has 9 levels of refinement, with
2.29 million hex cells and 7.3M faces. Only 310K of the cells (13% of the
mesh) intersected the geometry. There were 17827 split polyhedral cells in
the mesh, despite the number of levels of refinement.

The total number of cells in the mesh after each level of refinement is
shown in Table 3. As the mesh refines, the algorithm monitors the trend of
the cell growth factor. A curve fit is used to predict the number of cells in
the final mesh. This information makes it possible to minimize the number
of memory re-allocations and copies required during the mesh generation
process. For example, this growth factor for the last 3 refinements, as shown
in Table 1, is 2.20, 2.18, and 2.14 A buffer zone of 3 cells was used in this
mesh. The refinement criteria was 10 degrees. Six levels of mesh were refined
around the body before the algorithm started estimating where to refine.

The complete grid generation procedure, including the calculation of the
face and cell centroids, took 3 minutes 51 seconds on an SGI R10000 work-
station. A maximum of 308 Mb was used to generate the 9 level mesh. Figure
6 shows 10 cutting planes through the mesh, which provide a good indication
of the refinement criteria’s behavior. For comparison, the anisotropic 9 level
mesh, with a maximum aspect ratio of 8, had 1225022 cells.
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Ref. Level|Total # Cells|# Cut Cells|T0tal # Faces

5 81429 4603 256943
6 222714 16924 700969
7 490237 52139 1559113
8 1069985 144282 3416549
9 2291286 309981 7289082

Table 3. Growth of number of cells with refinement level for business jet example.

4 Future Research

Two projects currently underway would greatly extend the capabilities of
Cartesian mesh methods. The first computes inviscid flow with moving ge-
ometry, including the case with geometry components in relative motion. The
difficulty here is in developing numerical methods to handle the case where
Cartesian cells are newly uncovered during a time step, or become completely
covered by the geometry. Some two dimensional work in this direction is in
[Bayyuk, et al. (96)]; a new approach is being developed by [Forrer and Berger
(98)].

The second extension is to try to use Cartesian meshes to help generate
viscous meshes with boundary layer zoning in an automatic way. As con-
trasted with previous efforts by [Coirier (94)], the new approach [Delanaye et
al. (99)] uses a prismatic body-fitted grid, with a background Cartesian grid.
However, to reduce the dependence of the body-fitted grid on the quality of
the surface triangulation, a new triangulation based on the intersection of
the original surface with the Cartesian grid is used to spawn the new grid.
Since this new approach automatically generates the surface discretization
used by the flow solver, it maintains the decoupling between the geometry
description and surface mesh seen by the flow solver. This decoupling is one
of the biggest advantages of Cartesian meshes for inviscid flows, and retaining
it in the viscous case is an important first step.
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Fig. 1. Two common examples of “split-cells” where Cartesian hexahedra are cut
into multiple distinct flow-through regions.

Fig. 2. A general split face matching algorithm has to treat faces where the cell
on one side only is refined. The high = face of cell a is split into two face polygons
which must be matched with the 5 polygons on the low z face of the small cells.
The algorithm stores five faces for this case: one for ab, two for ac (cell c is split),
one for ae and one for adAll 4 faces on the refined side are split into 8 regions; the
coarse side is split into two pieces. The algorithm matches fragments of the face
polygons which lie on Cartesian edges.
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Fig. 3. The “+” signs illustrate the maximum variation in surface normals for a
two dimensional example. If the magnitude of the variation exceeds the adaptation
threshold, the cell needs to be refined. If the variation is all in one direction (within
the slivers marked by the dotted lines), the cell can be refined anisotropically.
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Fig. 4. Mesh around a cylinder with anisotropic refinement, aspect ratio 8.
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Fig. 5. Aspect ratio 8 mesh for the ONERA M6 wing.

6. Cartesian grid for business jet.
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